SALT AND NEARs Locality

Progression in Calculations Policy

January 2017

Before children move to written methods, they need:

- To understand the number system
- Know some number facts
- Have good mental strategies / mental agility!
- Be confident use concrete apparatus and pictorial representations to solve problems and explain their reasoning.

Purpose of the Policy:

- To make teachers and parents aware of the strategies that pupils are formally taught within each year group that will support them to perform mental and written calculations. Pupils should not move on through the methods until they have secured and understood how to use the methods, including the concrete and pictorial representations.
- The policy supports teachers in identifying appropriate concrete apparatus and pictorial representations to help develop and secure understanding.

Aims of the policy:

- To ensure consistency and progression in our approach to calculation.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.

How to use this policy:

- Use the policy as the basis of your planning but ensure you use previous or following years' guidance to allow for personalised learning.
- Always use Assessment for Learning to identify suitable next steps in calculation for groups of children.
- If, at any time, children are making significant errors, return to the previous stage in calculation.
- Always introduce a new concept/calculation using use suitable resources, models and images to support children's understanding of the calculation and place value, as appropriate.
- Encourage children to make sensible choices about the methods they use when solving problems.

Add Plus To	+ Addition + More	Sum Altogether
Year R Method to be used by core of class	Year 1 Method to be used by core of class	Year 2 Method to be used by core of class
Use pictures, tens frames, cubes and other concrete resources to to add two numbers together as a group or in a bar. See addition appendix 1- combining two parts to make a whole: part-whole model.	As year R plus: Teach all the number bonds up to and including 10 and the related 'Fact Family' for each fact. $\begin{array}{lr} 10=6+4 & 4+6=10 \\ 10-4=6 & 10-6=4 \end{array}$ Use concrete objects to combine groups to add and solve missing number problems. $3+\ldots=10$ Show this using the part/whole model. Understand place value - can partition numbers and recombine numbers Usually start with the biggest number (if counting on) $12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. See addition appendix 1-combining two parts to make a whole: part-whole model. Appendix 2 starting at the bigger number and counting on.	As year 1 plus: Addition can be done in any order (commutative) $34+56$ or $56+34$ Understand place value - can partition numbers \& recombine numbers $37=30+7 \quad 30+7=37$ Use partitioning to add numbers, first with concrete apparatus, then as a possible mental method. Have a range of mental methods for calculating first with numbers to 20, then with numbers to 100 e.g. breaking numbers apart to use them flexibly, this may be with a bridging strategy (e.g. $7+5$ could be thought of as $7+3+2$ or $5+5+2$), a compensating strategy (e.g. $7+9$ could be thought of as $7+10$ then -1) or by using a near double (e.g. $7+8=14+1$). add three numbers $4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Use number bonds e.g. 4+6=10 to work out 40+60=100 See addition appendix 2 starting at the bigger number and counting on. Appendix 3 regrouping to make 10. Appendix 4 adding three single digits.

Add Plus	Total	Sum Altogether	
Year 3 Method to be used by core of class	Year 4 Method to be used by core of class	Year 5 Method to be used by core of class	Year 6 Method to be used by core of class
As year 2 plus: Understand place value - can partition numbers \& recombine numbers to support column addition. $24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. Expanded addition, TU then TU crossing tens barriers, then HTU (three digits) $\begin{gathered} 34+62= \\ 30+4 \\ \underline{60+2} \\ \underline{90+6}=96 \\ 494+368= \\ 400+90+4 \\ \underline{300+60+8} \\ \underline{700+150+12}=862 \end{gathered}$ then Compact addition $\begin{array}{r} 494 \\ +368 \\ \hline \frac{862}{11} \end{array}$ See addition appendix 5 column method- no regrouping and appendix 6 column method - regrouping (bridging ten)	As year 3 plus: Add ones, tens and hundreds to a three-digit number Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. Compact addition (integers only) with numbers up to four digits e.g. $\begin{array}{r} 7648 \\ +1486 \\ \hline 9134 \\ \hline 111 \end{array}$ Expanded addition may be used for decimals in real contexts e.g. money and length. £11.35+ £12.43= $\begin{aligned} & £ 10+£ 1+30 p+5 p+ \\ & £ 10+£ 2+40 p+3 p \\ & £ 20+£ 3+70 p+8 p=£ 23.78 \end{aligned}$ See addition appendix 5 column method- no regrouping and appendix 6 column method - regrouping (bridging ten)	As year 4 plus: Compact addition with numbers larger than four digits. Compact addition with decimals to two places. e.g.$\begin{array}{r} 32.75 \\ +48.64 \\ \hline 81.39 \\ \hline 11 \end{array}$2 3 . 3 6 1 9 . 0 8 0 5 9 . 7 7 0 + 1 . 3 0 0 9 3 . 5 1 1 2 1 2 See addition appendix 5 column method- no regrouping and appendix 6 column method - regrouping (bridging ten)	As year 5 plus: Compact addition involving large numbers. Compact addition with decimals to three places. $\begin{aligned} & \text { e.g. } \begin{array}{r} 32.756 \\ +\frac{48.646}{81.402} \\ \frac{8111}{11} \\ 24.5+36.238 \\ 24.500 \\ +\frac{36.238}{1} \end{array} \end{aligned}$ See addition appendix 5 column methodno regrouping and appendix 6 column method - regrouping (bridging ten)

Subtract take away

e away less than			
Year 3 Method to be used by core of class	$\text { Year } 4$ Method to be used by core of class	$\text { Year } 5$ Method to be used by core of class	Year 6 Method to be used by core of class
As year 2 plus: Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. Number line method (2 and 3 digit numbers) 351-165=186 Begin expanded subtraction using concrete objects and pictorial representations. See subtraction appendix 5 make 10. Appendix 6 column method without regrouping.	As year 3 plus: Number line method (2, 3, 4 digit numbers, extending to decimals in a real context) Expanded subtraction e.g. $354-165$ $\begin{array}{r} 200+140 \\ 300+50+1 \\ -100+60+5 \\ \hline 100+80+6=186 \end{array}$ Use base 10 or place value counters alongside the written calculation to help to show working. Compact subtraction See subtraction appendix 5 make 10. Appendix 6 column method without regrouping.	As year 4 plus: Compact subtraction, involving numbers larger than 4 digits and with decimals to 2 places. Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident children can find their own way to record the exchange/regrouping. See subtraction appendix 5 make 10. Appendix 6 column method without regrouping.	As year 5 plus: Compact subtraction involving large numbers. Compact subtraction with decimals up to three places. See subtraction appendix 5 make 10. Appendix 6 column method without regrouping.

Multiply times lo	lots of x Multiplication x groups of	f multiple of product
Year R Method to be used by core of class	Year 1 Method to be used by core of class	Year 2 Method to be used by core of class
Introduce language and concept of making equal groups. Begin to double numbers to 5 . Use concrete apparatus to show how to double a number. endix 1 doubling.	As year R plus: Recall doubles to 10. Use this knowledge to support halving and doubling larger numbers. Understand multiplication as repeated addition. $\begin{aligned} & 5+5+5+5+5+5=30 \\ & 5 \times 6=30 \\ & 5 \text { multiplied by } 6 \\ & 6 \text { groups of } 5 \\ & 6 \text { hops of } 5 \end{aligned}$ Group sets of objects reliably in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Recognise number sequences e.g. 2 s , 5 s and 10 s . Use of arrays See multiplication appendix 1 doubling. Appendix 2 counting in multiples. Appendix 3 repeated addition. Appendix 4 arrays- showing commutative multiplication.	As Year 1 plus: By the end of the year pupils should recall all multiplication facts for the 2,5 and 10 times tables. Understand multiplication as scaling. The giant is twice as big as a boy. Understand that multiplication is commutative (arrays eg. Numicon and Cuisenaire particularly useful). Understand that multiplication ana aivision are the inverse of each other. $\begin{aligned} & 4 \times 10=40 \\ & 10 \times 4=40 \\ & 40 \div 4=10 \\ & 40 \div 10=4 \end{aligned}$ See multiplication appendix 2 counting in multiples. Appendix 3 repeated addition. Appendix 4 arrays- showing commutative multiplication.

Appendix

Progression in calculations linked to concrete apparatus, pictorial representations and abstract methods. When introducing a new method of calculation the concrete apparatus should be used first. Once this is secure pupils can then be moved onto pictorial representations and then abstract methods.

Addition:

Objective and Strategies	Concrete	Pictorial	Abstract
Appendix 1Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.		
Appendix 2- Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Appendix 3- Regrouping to make 10 .	ececeeceentym Quebeecee0 1 nown $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

	Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 3+9= \\ & 9+5=14 \end{aligned}$ 1.4	
Appendix 4- Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Appendix 5Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After picture to recombine the groups to make 10. can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$

Subtraction:

Objective and Strategies	Concrete	Pictorial	Abstract
Appendix 1- Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Appendix 2Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Appendix 3- Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Appendix 4 Part- Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Appendix 5- Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

Appendix 6- Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. $36-14=22$ Show how you			$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Appendix 7- Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	find their own way to record the exc	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can ange/regrouping. t writing the numbers as shown here ows that the child understands the ethod and knows when to change/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 7 & 28 & -582=146 \\ \text { " } & { }^{\prime} & u \\ { }^{7} & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Movin g forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Appendix 1Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\]
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Appendix 2Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |

\hline
\end{tabular}

Appendix 3Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Appendix 4-Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Appendix 1- Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Appendix 2Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$ (1) (1) (1)	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Appendix 3 -
Division within arrays
Appendix 4-
Division with a remainder

Year 1

Children should understand when to and be able to apply these strategies:

- reorder numbers when adding, e.g. put the larger number first
- count on or back in ones, twos or tens
- partition small numbers, e.g. $8+3=8+2+1$
- partition and combine tens and ones
- partition: double and adjust, e.g. $5+6=5+5+1$

Year 2

Children should understand when to and be able to apply these strategies:

- reorder numbers when adding
- partition: bridge through 10 and multiples of 10 when adding and subtracting
- partition and combine multiples of tens and ones
- use knowledge of pairs making 10
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add a multiple of 10 and adjust by 1
- partition: double and adjust

Year 3:

Children should understand when to and be able to apply these strategies:

- reorder numbers when adding
- identify pairs totalling 10 or multiples of 10
- partition: add tens and ones separately, then recombine
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add or subtract 10 or 20 and adjust
- partition: double and adjust
- partition: count on or back in minutes and hours, bridging through 60 (analogue times)

Year 4

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens and ones
- partition: add tens and ones separately, then recombine
- partition: subtract tens and then ones, e.g. subtracting 27 by subtracting 20 then 7
- subtract by counting up from the smaller to the larger number
- partition: add or subtract a multiple of 10 and adjust, e.g. $56+29=56+30-1$, or $86-38=86-40+2$
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. work out $140+150=290$ using $14+15=29$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)

Year 5

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens, ones and tenths
- partition: add hundreds, tens or ones separately, then recombine
- subtract by counting up from the smaller to the larger number
- add or subtract a multiple of 10 or 100 and adjust
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. 6.3-4.8 using 63-48
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)

Year 6

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens, ones, tenths and hundredths
- use knowledge of place value and related calculations, e.g. $680+430,6.8+4.3,0.68+0.43$ can all be worked out using the related calculation $68+43$
- use knowledge of place value and of doubles of two-digit whole numbers
- partition: double and adjust
- partition: add or subtract a whole number and adjust, e.g. $4.3+2.9=4.3+3-0.1,6.5-3.8=6.5-4+0.2$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times, 12-hour and 24-hour clock)

Mental Method Strategies

Multiplication and Division

Year 1

Children should understand when to and be able to apply these strategies:

- use patterns of last digits, e.g. 0 and 5 when counting in fives

Year 2
Children should understand when to and be able to apply these strategies:

- partition: double the tens and ones separately, then recombine
- use knowledge that halving is the inverse of doubling and that doubling is equivalent to multiplying by two
- use knowledge of multiplication facts from the 2,5 and 10 times-tables, e.g. recognise that there are 15 objects altogether because there are three groups of five

Year 3

Children should understand when to and be able to apply these strategies:

- partition: when doubling, double the tens and ones separately, then recombine
- partition: when halving, halve the tens and ones separately, then recombine
- use knowledge that halving and doubling are inverse operations
- recognise that finding a unit fraction is equivalent to dividing by the denominator and use knowledge of division facts
- recognise that when multiplying by 10 or 100 the digits move one or two places to the left and zero is used as a place holder

Year 4

Children should understand when to and be able to apply these strategies:

- partition: double or halve the tens and ones separately, then recombine
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right and zero is used as a place holder
- use knowledge of multiplication facts and place value,
e.g. $7 \times 8=56$ to find $70 \times 8,7 \times 80$
- use partitioning and the distributive law to multiply,
e.g. $13 \times 4=(10+3) \times 4=(10 \times 4)+(3 \times 4)=40+12=52$

Year 5
Children should understand when to and be able to apply these strategies:

- multiply or divide by 4 or 8 by repeated doubling or halving
- form an equivalent calculation, e.g. to multiply by 5 , multiply by 10 , then halve; to multiply by 20 , double, then multiply by 10
- use knowledge of doubles/ halves and understanding of place value, e.g. when multiplying by 50 multiply by 100 and divide by 2
- use knowledge of division facts, e.g. when carrying out a division to find a remainder
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right relative to the decimal point, and zero is used as a place holder
- use knowledge of multiplication and division facts and understanding of place value, e.g. when calculating with multiples of 10
- use knowledge of equivalence between fractions and percentages, e.g. to find 50\%, 25\% and 10\%
- use knowledge of multiplication and division facts to find factor pairs

Year 6
Children should understand when to and be able to apply these strategies:

- partition: use partitioning and the distributive law to divide tens and ones separately,
e.g. $92 \div 4=(80+12) \div 4=20+3=23$
- form an equivalent calculation,
e.g. to divide by 25 , divide by 100 , then multiply by 4 ; to divide by 50 , divide by 100 , then double
- use knowledge of the equivalence between fractions and percentages and the relationship between fractions and division
- recognise how to scale up or down using multiplication and division,
e.g. if three oranges cost $24 p$: one orange costs $24 \div 3=8 p$ four oranges cost $8 \times 4=32 p$
- Use knowledge of multiplication and division facts to identify factor pairs and numbers with only two factors

